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Abstract  

A general form of the momentum equation is presented. Because the solution is presented 
as an integral along a flow line, it is here referred to as an "extended" Bernoulli equation. The 
equation, as presented, is valid for unsteady, compressible, rotational, elasto-viscoplastic flows 
measured relative to a noninertial (translationally and/or rotationally accelerating) coordinate 
system, whose motion is known. Though all of these concepts have long been separately 
addressed in the educational literature of fluid and solid mechanics and dynamics, they are 
usually not available from a single source, as the literature prefers to reduce the problem to 
special-case solutions for instructional purposes. Two examples that make use of the extended 
Bernoulli equation in noninertial reference frames are solved. The consequences of failing to 
properly account for noninertial effects are discussed. 
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1. Introduction 
The Bernoulli equation is perhaps the most famous and widely used equation in fluid 

mechanics, relating the pressure, p, in a flow to the local velocity, V, and gravity potential. It 

was derived by considering a balance of momentum along a streamline, for the special case of 

steady, incompressible, inviscid flow in an inertial reference frame, with gravity as the only 

significant body force. The Bernoulli equation may also be derived from considerations of 

energy conservation, since, for inviscid flows, there is no energy loss. The Bernoulli equation 

is given as 

V2 

p— + p + pgh = constant  , (1) 

where p is the flow density, g is the acceleration due to gravity, and h is the vertical height of 

the flow relative to some reference location. Furthermore, if the flow is irrotational, the constant 

of eqn (1) will be the same for all streamlines throughout the flow. The real world is rarely so 

kind as to satisfy all the restrictive conditions under which eqn(l) was derived. Yet, because 

the influence of these nonideal (compressible, viscous, rotational, accelerational) terms is often 

small, the engineering world makes great use of eqn (1), often modifying it in an ad hoc manner 

when nonideal effects rear their ugly head. 

We endeavor here to pull together various equations and constructs from the literature into 

a single framework, to present an unsteady, compressible, rotational, elasto-viscoplastic, 

noninertially referenced momentum equation with no presuppositions. The importance of each 

term can then be examined at the time of application to ascertain when discarding or 

approximating it is appropriate. Because our primary interest in the subject lies in the area of 

noninertial coordinate systems, examples of this variety, which make use of what might be called 

an extended Bernoulli equation, are presented. 

All of the concepts relating to the momentum equation that are discussed in this report 

are readily available in one form or another throughout the educational literature of fluid 

mechanics, solid mechanics, and dynamics.   They are, however, not always found in a single 
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location. Furthermore, in an effort to teach textbook examples and solve textbook problems, the 

educational literature quickly reduces the governing equation to certain well-known academic 

cases, often failing to give full coverage to the general case involving viscous (or rotational), 

compressible, accelerating, nonsteady flows in noninertial coordinate systems. 

For example, Shames [1] generally does an excellent job of covering most aspects of the 

momentum equation and noninertial reference frames, though it is done in terms of finite-sized 

control volumes and not streamline-sized "flow tubes." Potter and Foss [2] cover all the relevant 

equations regarding the forces and accelerations upon a material point in a flow, but fail to tie 

the equations together into a generalized unsteady Bernoulli equation. Kelley [3] derives an 

extended Bernoulli equation, but only for the case of nonviscous flows in inertial coordinate 

systems. Currie [4] also derives a restrictive form of the extended Bernoulli equation, valid only 

for irrotational flow in an inertial reference frame. The very thorough Schlichting [5], because 

of its emphasis on boundary layers, does not even address the issue of noninertial coordinate 

systems. Greenspan [6] examines the momentum equation in a noninertial frame, but only for 

the special case of purely rotating frames, as might be found in the case of rotating fluid 

problems. In addition to addressing the steady-state Bernoulli equation for streamlines, Lamb [7], 

like Shames [1], also covers aspects of noninertial frames, but on an integrated volume basis. 

Thus, this report is intended merely to serve as a handy repository of several important 

well-established concepts that might otherwise need to be tracked down in a multiplicity of texts 

and chapters. 

2. The Momentum Equation and Special Cases 
The momentum equation on a continuum element of material, which can be found in 

many texts (e.g., Potter and Foss [2]), is given as 

OV       s... - Vp      „ 
_ = -±L L + VO , (2) 
Dt p 

where DIDt denotes the material derivative (discussed in following section); V is the vector 

velocity of the material element, as measured in an inertial reference frame; p is the element 



pressure; p is the element density; <£ is the body force potential; V is the vector gradient 

operator; s(J is the deviatoric-stress tensor arising from any type of elasto-viscoplastic constitutive 

behavior; and s^j is index notation for dsy/dxp denoting the following vector condensation of the 

deviatoric-stress tensor: 

ds       ds       ds     *        ds       ds       ds     *        ds       ds       ds 
s... = (—- + -J2L + _Ji) i + (-Jl + -JL + _£.); + (_ü + __£ + _ü) k .     (3) 

'■''■' dx       dy       dz dx       dy       dz dx      dy      dz 

Eqn (2) is a general form of the momentum equation from which many commonly employed 

special cases derive. 

For example, when deviatoric stresses, sip are zero, as in the case of an inviscid fluid, the 

momentum equation, eqn (2), becomes the well-known Euler's equation, 

  - --JL + VO   . (4) 
Dt p 

For a body in equilibrium, where the material accleration, DVIDt, is everywhere zero, but where 

deviatoric stresses, stj, may arise from elastic strains in the body, eqn (2) reduces to the 

equilibrium equation of solid mechanics, 

GUJ + pVO = 0   , (5) 

where aijwj is the absolute-stress tensor condensation resulting from the combination of the 

pressure gradient and deviatoric-stress condensation. On the other hand, if the flow is 

accelerational, but the deviatoric stresses in eqn (2) arise solely from Newtonian viscosity, u, in 

which shear stress is proportional to the associated velocity gradients (and assuming the validity 

of Stokes' hypothesis), then the deviatoric-stress condensation can be expressed in terms of 

velocity gradients (e.g., Schlichting [5]) to give the famous Navier-Stokes equation, 

p— = pV<D -V/? + uV2V + Ü-V(V-V)  . (6) 

For incompressible viscous flow, the last term of eqn (6) will vanish, since, for incompressible 

flow, the divergence of velocity is identically zero. This incompressible form of eqn (6) is known 



as the incompressible Navier-Stokes equation. Eqns (4)-(6) each represent a useful special-case 

solution of the general momentum equation, eqn (2). 

3. Lagrangian vs. Eulerian Acceleration 
Focusing on the left side of eqn (2), the material (also known as total or substantive) 

acceleration, DVIDt, denotes the acceleration experienced by "any one" particle of material as 

it traverses the flow field. In essence, it is the acceleration that would be measured by an 

infinitesimal accelerometer immersed in and traveling with the surrounding flow. The 

acceleration, DVIDt, is associated with a Lagrangian description of the flow field, in which 

V = V{x,y,z,t). In the Lagrangian description, x, y, and z are variables that, when taken as spatial 

coordinates (x,yj), define a particular material particle present at that coordinate at some given 

reference time, t0. Once a material particle is defined (i.e., once the variables x, y, z are fixed 

to particular values), the behavior of that particle becomes a function of time only and derivatives 

with respect to time (e.g., acceleration) describe the time rate of change as perceived by the 

material particle in question. The DIDt operator denotes these Lagrangian temporal derivatives, 

for the special case where the particular material point (x,yj) is defined when the reference time, 

tQ, is set to the current time, t, such that DVIDt = d/dt(V[x(t),y(t),z(t),t]). 

Often, however, it is (mathematically or experimentally) more convenient to measure flow 

properties (like acceleration) at fixed locations in space, rather than moving with a material 

particle. This framework is associated with the Eulerian description of the flow field, in which 

V = V(x,y,z,t). Unlike the Lagrangian description, however, in which the coordinates (x,y,z) define 

a material particle at some reference time, t0, the Eulerian variables x, y, and z define points that 

are forever fixed in coordinate space, even as material flows through that space. The measure 

of flow acceleration in this description, referred to as the local acceleration, is performed at a 

fixed point in space and denoted dVldt since spatial coordinates x, y, and z are held constant 

when computing the time rate of change. Lumley [8] provides an excellent comparison of these 

two frameworks. All undergraduate fluid mechanics texts derive the equations interrelating these 

two frameworks, which are simply presented here as 
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-^V[x(t),y(t),z(t),t] = BY. = ^ + (V-V)V . (7) 
rf? Dt        dt 

In addition to the local acceleration, it is seen that the material acceleration is composed of terms 

known as acceleration of transport, or convective acceleration, given by the last term of eqn (7). 

This equation reveals how conditions in a flow field at all points fixed in space can be steady 

(dV/dt = 0), while, at the same time, any material element of that flow experiences all manner of 

accelerations as it traverses the field (DV/Dt^O). 

Furthermore, a number of texts (e.g., Potter and Foss [2]) also present a form of eqn (7) 

that has been manipulated via vector mechanics, to yield 

DV dV yyfV2^   = — + V 
Dt        dt v2, 

+ (VxV)xV . (8) 

This form is especially interesting because it separates the V2 inertial-force term from the 

vorticity-induced term involving cross products. For flows that are irrotational, all terms 

involving vorticity, V x V, will vanish. Furthermore, the inertial-force term is the genesis of the 

V2 dependence of the Bernoulli equation, eqn (1). 

4. Noninertial Reference Frames 

In the momentum equation, eqn (2), the material acceleration must be measured with 

respect to an inertial reference frame. However, both experimentally and analytically (e.g., as 

in the case of potential flow), it is often more convenient to measure coordinates with respect to 

a body of interest within the flow field. If the body moves with constant velocity, then such 

body coordinates serve also as an inertial reference system. If, however, the forces of the flow 

upon the body serve to accelerate the body, the body coordinates are no longer inertial and 

eqn (2) is no longer valid as measured in the body coordinate frame. 

Any undergraduate dynamics text (e.g., Beer and Johnson [9]) and many fluid mechanics 

texts (e.g., Shames [1] and Potter and Foss [2]) derive or present the equation for acceleration of 

a particle, when the kinematics of particle motion are measured with respect to a noninertial 



reference frame xyz. Using the notation of Figure 1, in which the noninertial frame xyz moves 

with respect to an inertial reference frame XYZ by way of translation vector S(t) and rotation 

vector Q(0, while the kinematics of the particle motion in question are measured with respect 

to xyz by the displacement vector R(t), one obtains 

A = a + — + 2ßxV^ + Qx(QxÄ) + — xR  , (9) 

where A is the total acceleration with respect to XYZ; Vm = dRIdt is the velocity measured in the 

noninertial xyz frame; and a =DVxyJDt is the material acceleration, as measured in xyz. 

Since eqn (2), the momentum equation, can only be valid when applied in an inertial 

frame, eqn (9) provides the means to apply eqn (2) with respect to the inertial XYZ, even when 

the flow kinematics (e.g., R and V) are measured with respect to a translating and rotating xyz, 

which are perhaps attached to a body of interest. Realizing that the inertial acceleration, A, in 

eqn (9) corresponds to the material acceleration, DVlDt, presented on the left side of the inertially 

constrained eqn (2), we have by substitution 

A = —ZL + — + 2QxV    + QxjQxR) + ^IxR =  S^~Vp  + V<D  ,     (10) 
Dt dt2 dt p 

Substitution of eqn (8) for the noninertial xyz material acceleration, DVmIDt, and some simple 

rearrangement gives the following result: 

v
m +  <£S_ + (VxV   )xy     + 2QxV    + Qx(£lxR) + —xR 

,.•> v xyz'        xyz xyz v ' jt dt        dt2 m      * "* dt 
s... - Vp    W* 

= V$ +   ,J,J - — 
P 2 (ID 

Eqn (11) is valid at all points in a compressible, elasto-viscoplastic, rotational, nonsteady flow 

subject to conservative body forces, as measured in a reference frame undergoing time-dependent 

translational and rotational motions. 



Figure 1. Depiction of the noninertial reference frame xyz translating (S) and rotating (Q) 
with respect to inertial frame XYZ. Flow kinematic variables R, Vxy7? and a are 
measured with respect to the noninertial xyz frame. 



The first two terms of eqn(ll) represent the inertial XYZ rigid-body translation^ 

acceleration of the material point in question. The third term, involving vorticity, V x V, 

represents acceleration resulting from flow vorticity, as measured in xyz. The remaining terms 

on the left-hand side represent Coriolis, centripetal, and rotational accelerations arising strictly 

from the time-dependent rotational motion of the noninertial reference frame xyz. On the 

right side of eqn(ll), the traditional Bernoulli force terms (body, pressure, and inertial) as well 

those involving deviatoric-stress gradients are found. 

5. Extended Bernoulli Equation 
While the term "Bernoulli equation" describes only the relation given in eqn(l), it is 

popular to use the term "Bernoulli" to describe the momentum equation when integrated along 

a contour in a flow field, even if the restrictive conditions (steady, incompressible, inviscid flow 

in an inertial reference frame, with gravity as the only significant body force) that are in force 

for eqn (1) have been relaxed. In this spirit, eqn (11) may be integrated along an arbitrary flow 

contour fixed in noninertial xyz space (thus translating and rotating with S and Q in XYZ space) 

and the result referred to as an extended Bernoulli equation. The contour integration yields 

f( 22. + —YdR +  [(VxV   )-(V   xdR) 
R, Ä, 

fcßxV^ + flx(ßxfi) + ^LxR^-dR = (<£ - V^/2)£ + |(^ - -ZJ-dR   , (12) 
dt 

where the vector increment dR is made to follow the path of the contour throughout the 

integration. This result is valid for nonsteady, compressible, rotational, elasto-viscoplastic flows 

in a noninertial reference frame. Note that a minor vector manipulation has been performed upon 

the vorticity integral term. Furthermore, the gradient integrals of inertial and body forces on the 

right-hand side of eqn (12) were reduced to a difference in the values of V2/2 and <3> between the 

two endpoints of the contour. The pressure gradient integral may also be a function of the 

contour endpoint values, {pip), but only if the flow is incompressible; otherwise, the term must 

be integrated along the contour. Unfortunately, the deviatoric-stress integral must, in general, be 
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explicitly performed, as it does not represent a gradient potential. The contour of integration in 

eqn(12) may be any arbitrary three-dimensional contour. However, the resulting equation, 

because of the vector mathematics, will be scalar. 

Different types of problems will employ different terms of this equation. For example, 

problems of fluids involving turbomachinery will allow the first integral to be discarded if the 

problem, when viewed in a rotating coordinate system can be made to appear steady. For 

irrotational flows, such as are found in many applications of potential flow theory, the second 

integral may be discarded. Even when the flow is rotational, if the integration contour is, at a 

particular instant in time, also a streamline (i.e., everywhere parallel to the velocity vector), the 

second integral also disappears, as VxdR will be zero at all places along a streamline. For the 

problem of linearly accelerating bodies within a flow field, the noninertial body-coordinate 

system xyz need not rotate and the third integral may therefore be discarded for problems of this 

type. Typical conditions that could justify elimination of terms on the right-hand side of the 

equation would involve negligible body forces and/or shear stresses (inviscid, nonelastic). 

Several examples involving the use of eqn(12) are now investigated. Because our 

primary interest in the subject lies in the area of noninertial coordinate systems, we will focus 

on problems of this type. 

6. Nonsteady Potential Flow Around a Sphere 
The use of flow potentials to solve a variety of steady flow problems is a well-established 

procedure in fluid mechanics textbooks. Mention is usually made of nonsteady potential flow 

by showing an equation involving a time-derivative of the potential, but nonsteady potential-flow 

problems are not typically solved or explained in textbooks. One reason becomes quickly 

apparent, when it is considered that most potential flow fields extend infinitely in at least one 

direction. In particular, any time-dependent variation of a potential flow field will often involve 

time-dependent variations at infinity. Time-dependent velocities involve accelerations, and 

accelerations require forces. And though steady flow around a fixed body is inertially equivalent 



to that body's uniform motion through a quiescent medium, it is most definitely not true that 

the force required to accelerate a body through a medium at rest (e.g., the universe) is identical 

to the force required to accelerate the universe around the at-rest body. 

Fortunately, eqn (12) allows one to overcome this difficulty. An unsteady potential flow 

problem, in which the universe is allowed to accelerate about a fixed-in-space potential-flow 

body, can be solved, as long as it is realized that the potential-flow body is fixed in noninertial 

xyz space—a coordinate system that is, in effect, accelerating equal and opposite to the 

acceleration of the potential-flow far-field. In this way, the net far-field acceleration is zero and 

the unsteady motion of a body through an inertial flow field is truly modeled. This argument 

is valid for both linear and rotational far-field accelerations. 

The potential-flow solution for invisicid, nonrotational, incompressible, uniform flow 

about a rigid sphere is published in many textbooks (e.g., Potter and Foss [2], Shames [1]). The 

flow field, in polar (r,8) coordinates, is given by 

vr =   C/cos0 (1 -ro/r3)   , and 

ve = -t/sinB (1 +r0
3/r3)   , (13) 

where U represents the uniform free-flow velocity about a sphere of radius r0, fixed at the origin 

of the coordinate system (with the flow traveling from the -x toward the +x direction). To make 

this flow unsteady, allow the free-flow velocity to be a function of time, U(t). Recall, to avoid 

the complication of trying to force the universe to accelerate around the sphere, that the potential- 

flow coordinate axes, xyz, attached to the sphere, are in fact simultaneously traveling toward the 

-x direction with a nonsteady velocity of magnitude U(t). 

Realize that this problem does not involve vorticity, employs a noninertial reference frame 

that does not rotate, has negligible body forces, has no shear stresses (inviscid), and is 

incompressible.  The extended Bernoulli equation for this problem then becomes 
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^V„      d*S\  Jn        [Vlv 

f xyz + ■dR = - 
dt dt2i x 2       p 

(14) 

where /?, and R2 are the endpoints of the integration contour. If the integration contour is chosen 

to be the (straight line) stagnation contour traversing from (-°°,0,0) to (-r0,0,0), the only velocity 

component of relevance to the integral is the x component, so that 

VJiX'V = -vJe=* = u® C1 + ro^3) (for x<-r0,y = z = 0)   . (15) 

The terms from the right-hand side of eqn(14) may thus be evaluated as follows: 

i\dt        dt) p        l 2       p I 
(16) 

To finish the solution, dVJdt needs to be evaluated from eqn(15) and substituted into 

eqn (16). Time-dependent potential flows (and others) often have the virtue of being separable 

in space and time, as in Vx(x,t) = U(t)-g(x). If the one-dimensional (1-D) contour length is 

infinite in extent, the spatial integral of the time derivative, in this separable case, may be 

expressed as 

]!Lfc.££-]2-*. (i7) 
J dt dt     1 U 

-oo -oo 

Alternately, if the 1-D contour were of finite length, eqn (17) could be expressed as 

* 

\^ldx-^L(b-a)-A  (18) 
J dt dt Uib-a) 

The right side of eqn (18) is composed of the free-stream acceleration multiplied by the contour 

length as well as a quotient factor. The quotient factor is the average velocity along the contour 

divided by the free-stream velocity, and, in the case of a stagnation contour, it will generally fall 

in the range from zero to unity, depending on the details of the flow. 

11 



In the present case, eqn(17) is utilized for the evaluation of eqn(16). It is noted that 

there is a canceling of the dUldt term, which is necessary to avoid computing the force necessary 

to accelerate the universe. For the considered flow integrated along the specified contour, 

eqn (16) may be evaluated as 

pU2      Pr0 dU nm p    -p   = —— + —   . (19) 

Thus, if the time-dependent velocity of the sphere is known, the stagnation pressure may be 

evaluated with eqn (19). That pressure varies from what would be predicted by the Bernoulli 

equation, eqn (1), by a term involving the acceleration rate of the sphere. If the acceleration of 

the sphere is positive, the stagnation pressure is seen to be higher than the Bernoulli pressure, 

while, if the sphere is decelerating, the stagnation pressure is less. 

7.  Nonsteady Solid Eroding-Rod Penetration 
The problem of eroding-rod penetration has been examined by a number of researchers 

in recent years. The seminal works on subject were done independently by Alekseevskii [10] and 

Täte [11] more than 30 years ago. Täte, in subsequent work [12-13], examines the flow field 

associated with long-rod penetration in more detail. In the course of the work [12], the effect and 

magnitude of the noninertial influence are calculated for his idealized flow potential. Täte 

concludes that, when the long-rod penetration process can be considered as quasi-steady, the 

noninertial effects may be neglected. Since then, a thorough and insightful analysis of the 

relevant balance equations was performed by Wright and Frank [14]. Their analysis computes 

surface and volume integrals over the relevant region in the vicinity of the rod/target interaction 

zone and was able to show that the target resistance term of Alekseevskii [10] and Täte [11] 

encompasses more than just a simple measure of target strength. 

A more recent treatise on the subject, which instead relies upon a force/momentum 

balance along the centerline contour only, is that of Walker and Anderson [15]. Upon assuming 

certain reasonable velocity fields in the tip of the rod and in the target crater, they proceed to 

solve the momentum equation in glorious detail, directly in the inertial XYZ laboratory frame of 
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reference, to include noninertial effects. The analysis presented here is not intended to supplant 

the esteemed work of Walker and Anderson. Rather, it is intended to show that the concepts 

derived herein may be very simply applied to the same problem to a similar end. Furthermore, 

the manner in which an accelerating coordinate system, attached to the rod/target interface, 

affects the overall result should be apparent in a more direct way. 

In the eroding-rod problem (see Figure 2), a solid rod, of density pR, instantaneous length 

L, and velocity V, penetrates into a semi-infinite block of density pT. The rod is assumed to 

support a uniaxial-stress state in the longitudinal direction of the rod. The eroding interface is 

traveling into the target at velocity U. Furthermore, employing the assumed velocity profiles 

suggested by Walker and Anderson, there is a small plastically deforming region located at the 

eroding tip of the rod, of length s, where the velocity linearly transitions from the rigid-body rod 

velocity of V to the interface velocity of U. On the target side of the interface, the crater 

geometry (Figure 3) is locally considered a hemisphere of radius R in polar (r,0) coordinates, 

with the target flow velocity, u, along the axis of symmetry decaying as 

u 1 
U      a2 - 1 L 

aR 2 

-1 (R<r<aR)  , (20) 

while remaining zero at all distances r at and beyond aR. The parameter a defines an extent of 

plasticity in the target, with a> 1 defining a finite-sized plastic zone in the target, and a—»1* 

denoting the limiting case of infmitesimally thin plastic zone. Along the axis of symmetry of 

the noninertial xyz coordinate system of Figure 3, z = r - R. Both the projectile and target plastic- 
« 

flow zones may be considered incompressible, despite the axial velocity gradients, because of an 

associated radial divergence of the flow field. 

Because V, U, and L are changing with time t, the reference frame attached to the 

rod/target interface will be a noninertial frame xyz traveling at the time-dependent velocity U. 

Though Walker and Anderson considered the general case of time-varying s and a, these 

geometry parameters are held constant for simplicity.   From the perspective of the interface 
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Plastic Zone 
in Rod 

Plastic Zone 
in Target 

Figure 2.  Geometry of the solid eroding-rod problem. 

Figure 3. Assumed target flow pattern in target, per Walker and Anderson [15]. Note that, 
along the axis of symmetry, the crater coordinate, r, is related to interface 
coordinate, z, by z = r - R. 
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coordinate system xyz, the velocity as a function of axial coordinate z, along the centerline of the 

problem, can be given as 

V  = z U 

v-u 
-(V - U) zls 

a" 1 R+z 

-U 

-L<z< -s 

-s<z<0 

-U       0<z<(a-l)R 

z>(a-l)R (21) 

This flow field is schematically shown in Figure 4. Specifying the extended Bernoulli equation, 

eqn (12), along the contour defined by the axis of symmetry, for this case of irrotational (along 

the axis of symmetry), incompressible flow with only rectilinear accelerations, the extended 

Bernoulli equation reduces into a 1-D integration in z, yielding 

fi 
'♦£!W--.ü 

dt I 

V. 

~2 

2   Z, 

+ 

z, z 

*2 2o      +G      , 
XZ,X ZZ,Z \J (22) 

The factor of 2 on the axlJ, term arises because of symmetry, for which oxv and ayzy are equal 

on the axis of symmetry. Furthermore, because the integration contour is aligned with the z axis 

and the flow is incompressible, the G^ integral will amount to a difference of (o^/p) between 

the contour endpoints. This equation is, of course, identical to the momentum equation derived 

by Walker and Anderson, though expressed in the noninertial xyz coordinates, rather than the 

laboratory XYZ coordinate frame. 

First, limit the fixed integration contour to the elastic portion of the solid rod, spanning 

the range -L<z< s, and solve eqn(22) in light of the velocity field specified by eqn(21). 

Because the rod velocity at z = s and z = -L are identical, the contribution of the V2 gradient 

integral is zero. Further, because the stress state in the rod is assumed uniaxial in z, the shear- 

stress-gradient integral will be exactly zero. Finally, note how the dUldt acceleration terms from 

V, and the noninertial frame acceleration cancel out. Thus, one obtains 
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Figure 4. Schematic depicting the assumed velocity field along the axis of symmetry of the 
eroding rod and target. 

16 



ÄL-5) = _L(-7Ä-0)  , (23) 
dt PÄ 

where YR is the yield strength of the rod, being exactly the uniaxial-stress state (where tension 

is defined as positive) at the elastic-plastic interface [i.e., aa(z = -s) = -YR]. This is the 

high-sound-speed limiting result of Walker and Anderson (since it was not here accounted for 

the finite wave speed at which acceleration information travels down an elastic bar). They noted 

further that, were the size of the rod's plastic zone, s, a negligible percentage of the overall rod 

length, L, eqn (23) reduces to the Alekseevskii-Tate rod deceleration equation, dVldt = -YR/(pRL). 

Despite any decelerations of the noninertial frame traveling at velocity U with the rod/target 

interface, the rod deceleration equation is totally independent of interface velocity U. 

Secondly, reconsider eqn (22) over a different integration contour, still along the axis of 

symmetry but spanning from -L<z<0, thereby including the complete rod in the integration. 

The terms of eqn (23) are thus retained, while adding to them the terms that arise from the small 

plastic zone at the tip of the eroding rod. Denoting the axial stress aa, at the rod/target interface, 

as ostag, one obtains 

dv{L.s) .{dv_du■ s , dus . _r, , omt _ (-r*) , <y-u?     (24) 
dt K dt      dt' 2       dt pR        pR pR 2 

This result is identical to the result of Walker and Anderson, for the case of constant plastic zone 

extent, s. It can be solved for the compressive stagnation stress at the rod/target interface and, 

by making use of a substitution of eqn (23), results in 

-o....-^V:Uf ^Y.-i^^-C. (25) stag ^dt + dt' 

If the extent of the rod's plastic zone, s, is small compared to rod length, L, or if the penetration 

process is steady (i.e., velocity derivatives zero), the last term in eqn (25) becomes negligible and 

the remaining terms become identical to the expression proposed by Täte [11] for the stagnation 

stress on the rod side of the rod/target interface. 
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Turning to the target, the integration contour is defined to be along the axis of symmetry 

throughout the target. That is, eqn (22) is integrated between 0 < z < °°, in light of eqn (21), to 

obtain 

dUldt 

cc2-l 

^2 (aRy +z 

(R + z) 

(a'1)Ä     f  dU + dU] 
dt        dt Jo J (a-l)S 

(o-l)fi 

2 PT PT    i      dx Pr Jw   dx • (26) 

The last term of both sides of the equation (the rigid-body acceleration term on the left, and the 

shear-stress integration on the right) are both zero, since the target material beyond the region 

of plastic extent, z > (a - l)R, is essentially undisturbed. Solving for the axial stagnation stress 

on the target side of the rod/target interface gives 

-a      =^!l + (>TR^L^Zl-27^dz. (27) 
"a*        2 T    dt a + 1 J     dx 

Since this paper is primarily concerned with the kinematics of nonsteady flow fields, it 

is not intended to delve into the constitutive relations by which the shear-stress integral along the 

centerline contributes to the stagnation pressure beneath an eroding rod. Walker and 

Anderson [15] may be consulted for these details for those interested. Suffice it to say that the 

terms in eqn (27) correspond identically to their terms associated with target stresses, for the 

special case of fixed extent of target plasticity (i.e., constant a). Furthermore, they note that, for 

the limiting case of small crater radius, R -> 0 (corresponding to truly 1-D penetration), the shear- 

stress integral becomes the sole modification to the Bernoulli stagnation pressure. For the 

fixed-a case, this shear-stress integral becomes a positive constant related to the yield strength 

of the target material and is traditionally given the name target resistance, denoted Rr One may 

infer from the result of Walker and Anderson that, in addition to the target's inertial head 

(pr£/2/2), it is the target's shear-stress field, rather than the acceleration of target material under 

the penetrator, that is the primary contributor to interface pressure on the target side of the 

interface, when the penetration process is nearly steady. 
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By limiting the scope of problem complexity and by achieving algebraic expediency via 

the use of a noninertial rod/target interface coordinate system, the primary result of Walker and 

Anderson, who spent quite a number of journal pages exhaustively addressing this subject, has 

been recreated in the span of several paragraphs. For those who don't wish to dwell on the solid- 

mechanics aspects of their derivations, the parts of the problem dealing with accelerations and 

noninertial frames can be grasped here, in their essence. 

8.  Consequences of Noninertiality 
The means of accounting for the noninertiality of a reference system have long been 

established and are embodied in eqn(9). Failure to properly take these terms into account, 

however, will lead to erroneous calculations in various forms. Consider the two example 

problems examined in the proceeding text to see the consequences of improperly applying the 

momentum equation in a noninertial frame. 

For the accelerating sphere problem, failing to subtract out the dUldt acceleration of the 

noninertial xyz frame would have added a term to the stagnation pressure, eqn (19), of magnitude 

p • dU/dt multiplied by the contour length, call it I. Obviously, for a contour of infinite length, 

the error would be infinite, resulting from the fact that the pressure being computed arose from 

accelerating the whole mass of the universe about the sphere. If the contour length were finite, 

the added pressure term, being proportional to contour length, is like the situation existing within 

a (inviscid) wind tunnel. Additional pressure head needs to be supplied to the tunnel in order 

to accelerate the flow through the tunnel test section. A quick inspection of the form of eqn (19) 

(augmented on the right side by p / • dUldt) reveals that, as the pressure differential is raised 

across the test section, the flow velocity will accelerate to eventually reach a new equilibrium 

velocity. The length of the test-section contour, /, denoting the length (and thus mass) of the 

flow to be accelerated, will govern the time constant of the acceleration. So, in the case of the 

problem of an accelerating sphere, improperly ignoring the noninertiality of the reference frame 

actually changes the problem to one of a sphere fixed in a wind tunnel. 
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For the eroding-rod problem, the consequences of ignoring the noninertiality of the 

interface coordinate system produce a different set of errors. The consequences upon the rod 

deceleration equation, eqn (23), would literally be to replace dVldt with d(V - U)/dt, as in 

^-ü)(r-.)B-
y« (28) 

dt 9R 

For a symmetric impact of like materials at speeds above the elastic limit, U will typically be on 

the order of V72. In such a case, the effect on rod deceleration will be an error on the order 

of 100%. For cases where U is a larger percentage of V, as in the case of high-density-rod 

penetration, the error in the deceleration calculation is correspondingly increased. 

On the target side of the interface, failure to account for the acceleration of the coordinate 

system will introduce a -pT-l-dU/dt contribution to right side of the momentum balance 

equation, eqn (27), as in 

-o,    = ^ + PTR£L^1 - 2°T^L& - pTl™ . (29) 
'""        2 T    dt  a+1 I     Bx T   dt 

Here, / denotes a contour length of target material to be integrated [assumed greater than or equal 

to (a - 1)R], and dUldt is negative for a decelerating rod. The first warning flag is that the last 

term of eqn (29) is proportional to the contour length which, for a semi-infinite target, is infinite 

in length. Such an improper inertial interpretation again leads to a calculation of the force to 

accelerate the universe with respect to the rod/target interface. If, on the other hand, the 

thickness of the target were finite, or if the integrated contour length, /, were arbitrarily made 

finite, eqn (29) though quite incorrect, might seem less obviously so. If length / of the integrated 

contour were large enough to dominate the other terms of eqn (29), leading to 

a,    =pT/—   , (30) 
stag T      dt 

one might erroneously conclude that the normal interface stress, oslag, is primarily supported by 

the "apparent" deceleration of target material relative to the rod/target interface, rather than by 
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the inertial head and elastic shear-stress distribution within the target. In reality, the true effect 

of interface deceleration [second term on the right side of eqns (27) and (29)] has just the 

opposite effect (i.e., opposite sign): when the interface and associated target material are 

traveling at velocity U, a deceleration of the interface actually lowers the stagnation stress 

because not only is U made lower in the process, but also the associated target material is 

inertially tending to travel at U and resists any decrease in interface velocity. This resistance of 

target material to decelerate (i.e., the inertia of the plastically entrained crater material) would 

have the effect of superimposing an axial-tension field on top of the steady-state (inertial) 

compression distribution. Thus, the act of interface deceleration actually lowers the interface 

stress. 

Another reality check, which would indicate the inappropriateness of eqn (30), is the 

inference that a positive acceleration of the rod/target interface would be met with tension at the 

interface. Such accelerations invariably occur, when the penetration of a multilayered target 

transitions from a high-density target element to a lower density element of comparable strength. 

Yet, it is known that such a transition is not accompanied by tension at the rod/target interface. 

Thus, in the case of an eroding rod undergoing deceleration, it may be concluded that a proper 

accounting of the noninertial behavior of the rod/target interface is crucial to a proper formulation 

of the overall problem. 

9. Conclusions 
Once the groundwork for the extended Bernoulli equation, eqn (12), has been laid, the 

solution to actual problems can often proceed quickly. All of the concepts necessary to develop 

this equation have existed in the educational literature of fluid and solid mechanics and dynamics 

for many years, if not centuries. However, all of the applicable terms contributing to the 

equation are not generally located in a single source, as the educational literature prefers to 

expeditiously reduce the governing momentum equation to special-case solutions for instructional 

purposes. These special-case limitations often include steady, incompressible, irrotational, or 

inviscid flows in inertial reference frames. 
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The momentum equation along an integration contour within a general flow field has been 

herein rederived. By placing no restrictions on the type or manner of flow, the equation has been 

presented, using the popular terminology, as an "extended" Bernoulli equation. The equation, 

as presented, is valid for unsteady, compressible, rotational, elasto-viscoplastic flows measured 

relative to a noninertial (translating and/or rotating) coordinate system, whose motion is known. 

Of particular interest were flows measured relative to noninertially translating coordinate 

systems. As such, two example problems of this variety have been solved in this report. The 

effect of coordinate system noninertiality introduces additional terms into the momentum 

equation, which are only ignored at the peril of the investigator. In the case of a rigid sphere 

accelerating within a quiescent inviscid medium, a failure to consider the noninertial terms has 

the effect of solving a different, though valid, problem of a stationary sphere in a wind tunnel. 

In the case of the solid eroding-rod problem, by comparing the present analysis to that 

of Walker and Anderson [15] (who solved the identical problem in the inertial laboratory frame 

of reference), it was observed that choosing a convenient coordinate system (even if noninertial) 

can significantly simplify the algebraic manipulation of the governing momentum equation. 

However, if misapplied, the consequence of failing to account for the acceleration of the eroding 

interface produces significant errors, numerically and conceptually. First, the rod deceleration 

rate is miscalculated, often by a factor of 2 or greater. Also, in the target, the basic 

understanding of the problem is completely distorted by failure to properly account for the 

noninertiality of the interface reference frame. In reality, the inertial head and elastic shear-stress 

distribution within the target are primarily responsible for the buildup of interface pressure, while 

the interface deceleration, because of the target-material inertia in the plastically entrained zone 

of the target, actually ameliorates the interface stress. From the point of view of the noninertial 

frame however, one might erroneously conclude that the interface deceleration was actually the 

primary cause for the buildup of stress on the target side of the interface—a conclusion totally 

opposite from and in contradiction to the properly formulated (inertial) momentum balance. 
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This report presents a general form of the momentum equation that is extremely useful 

for solving a great variety of problems that might not otherwise fall into idealized categories. 

The solved examples help to illustrate the power of choosing a convenient frame of reference in 

which to solve a given problem. However, the examples also serve to emphasize the vital 

importance of properly accounting for effects of accelerating reference frames. 
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